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Ab initio computations can be used to determine the values of a wide variety of
physical properties of atoms, molecules and solids. The calculations are com-
putationally demanding and can only be applied to small systems. One possible
method for overcoming this limitation is to use parallel computers which, in
principle, can provide unlimited computational power. In this paper the technical
difficulties associated with parallelizing ab initio calculations are reviewed and a case
study detailing the implementation of total energy pseudopotential codes on parallel
machines is presented.
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There are a large number of ab initio or first principles methods available for
calculating the physical properties of atoms, molecules and solids. These methods
can be used to calculate the values of a wide range of physical properties and the
results are consistently found to be in very good agreement with experimental
values. The success of these methods has been so great that they are now generally
regarded as predictive. However, all these methods are computationally demanding
and even calculations for small systems, containing only a few atoms, can only be
performed on powerful workstations or supercomputers. At the same time it is
increasingly apparent that many complex processes in physics, chemistry, biology
and materials science can only be solved with ab initio modelling of systems a
hundred or thousand times larger than those now studied. There are two ways of
increasing the size of system that is accessible to ab initio modelling. One is to
improve the algorithms and hence increase the computational efficiency of the
method. The other is to use a more powerful computer. It is now accepted that the
only way to achieve significant increases in computational power in the immediate
future is by harnessing together the power of many processors in a parallel computer.
The most powerful parallel machines presently available achieve computational
performances of the order of 10 GFlop but it is clear that within the next five years
at least one teraflop machine will become available.

Although the number of processors in a parallel machine can, in principle, be
increased without limit it is not clear what ultimately limits the technology that links
the processors together into a useful machine and so the ultimate performance that
can be achieved from such machines is not known. However, it is obvious that
computational power of the order of ten thousand times greater than present
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212 M. C. Payne, L. J. Clarke and 1. Stich

supercomputers and one hundred thousand times greater than present workstations
will be available. These figures are so large that it appears that the only obstacle to
ab initio modelling of complex processes is the implementation of existing techniques
on parallel machines. Unfortunately this is not the case because of the severe scaling
of the computational time with system size of most ab ¢nitio techniques. If the
computational time scales as the fourth power of the system size then the 10000 fold
increase in computational power yields only a ten fold increase in the size of the
system that can be studied; still one or two orders of magnitude removed from the
target figure for complex processes. This is not to say that the ab ¢nitio method
cannot be applied to a large range of important scientific problems. However, it is
clear that implementation of ab initio codes on parallel computers alone cannot be
viewed as the solution to the limitations on system size. Another problem that is
particularly acute in many ab initio methods is that it may not be possible to
implement the current numerical algorithms on parallel machines. One example is
the QR factorization method for matrix diagonalization (Wilkinson 1965). The
computational time for the QR method scales as N3, where N is the size of the matrix,
but this algorithm cannot be implemented on a parallel computer. Other matrix
diagonalization techniques such as the Jacobi method (Wilkinson 1965) can be
implemented on parallel machines. However, the computational cost of these
methods scales as N*. Hence, in the case of matrix diagonalization the additional
power of a parallel computer would be completely negated by the reduction in
efficiency of the numerical algorithm. To achieve a real gain from the use of parallel
computers it is crucial to develop numerical methods that have the lowest possible
scaling of computational cost with system size. Only after this has been achieved will
an increase in computational power yield a significant increase in the size of system
accessible to the ab initio technique.

In the remainder of this paper we concentrate on just one ab initio modelling
method, the total energy pseudopotential method. In §2 it will be shown how a
number of algorithmic developments in recent years have drastically improved the
computational efficiency of this method. The implementation of total energy
pseudopotential calculations on parallel machines will be described in §3 and
prospects for the future are briefly summarized in §4.

2. The total energy pseudopotential method

A number of reviews (Cohen 1984 ; Joannopoulos 1985; Pickett 1989) provide an
overview of the total energy pseudopotential method. Technical details can be found
in IThm et al. (1979) and Denteneer & van Haeringen (1985). Recent algorithmic
developments are described in detail in Payne et al. (1992). The elements of a total
energy pseudopotential calculations are as follows: the ions are represented by
pseudopotentials (Phillips 1958; Heine & Cohen 1970) so that only the wavefunctions
of the valence electrons are included in the calculation; density functional theory
(Hohenberg & Kohn 1964 ; Kohn & Sham 1965) is used to represent the effects of
electron—electron interactions; calculations are performed on a periodically repeated
unit cell (referred to as a supercell) so that the electron wavefunctions at each k-point
in the Brillouin zone can be expanded in terms of a discrete plane wave basis set as
follows

wn,k=ZCGeXp(i[k+G]'r)> (1)
G
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where k is the k-point in the Brillouin zone and the summation is over reciprocal
lattice vectors. This basis set has to be truncated and the convenient choice is to
include all basis states for which |k + G| is less than a cut-off wavenumber, @ ;.

The electronic states are given by the self-consistent solutions of the Kohn—-Sham
equations (Kohn & Sham 1965)

—(B2/2m) V2 + Vign (1) + Vie(r) + Vi (") Yk = €0 W 10 (2)

where V., is the ionic potential, Vy is the Hartree potential, Vs is the exchange-
correlation potential and €, is the Kohn—Sham eigenvalue. Self-consistent solutions
are required because the Hartree and exchange-correlation potentials depend on the
electronic density, n(r).

The earliest implementations of the total energy pseudopotential method used
standard matrix diagonalization techniques to obtain the Kohn—Sham eigenstates at
a computational cost proportional to N3y, where Ny, is the number of plane wave
basis states used to expand the electronic wavefunctions. This appears to be a
reasonable scaling of the computational time with system size. However, the number
of plane wave basis states required is at least one hundred times larger than the
number of atoms in the unit cell. Restrictions on computer memory and
computational time limited such calculations to the order of a few tens of atoms in
the unit cell. Furthermore, it is harder to achieve self-consistency as the size of the
system increases so that the true scaling of computational time with system size is
more accurately represented by the fourth or higher power of the number of atoms
in the unit cell. Since only the few occupied Kohn—Sham eigenstates are required to
compute the total energy it is clear that a significant saving in computational time
can be achieved by using iterative matrix diagonalization techniques and including
only the occupied electronic states in the calculation. A number of such methods
have been developed but the most significant breakthrough in total energy
calculations was achieved by Car & Parrinello (1985). They developed the molecular
dynamics method for performing total energy pseudopotential calculations which
included several novel techniques for increasing the efficiency of the calculations. In
addition to the use of iterative matrix diagonalization techniques the process of
iterating to self-consistency was overlapped with the process of determining the
Kohn—Sham eigenstates thus decreasing the additional computational cost of
achieving self-consistency. The basic operation common to all iterative matrix
diagonalization methods involves the multiplication of the trial wavefunction by the
hamiltonian matrix. Car & Parrinello significantly increased the speed of this
multiplication by dividing the operations between real and reciprocal space. The
product of the Kohn—Sham hamiltonian H and the trial wavefunction is given by

Hyr,, = —#/2m) |k + GI*Y, ((G)+ (Vion(r) + Via(r) + Vi () Yy 1 (7 (3)

where the first term on the right-hand side is the product of the wavefunction and
the kinetic energy operator, which is diagonal in reciprocal space, and the second
term is the product of the wavefunction and the potential energy operator, which is
diagonal in real space if the ions are represented by local pseudopotentials. It
requires N3y, operations to evaluate the product of a matrix and a vector but by
rewriting this product as shown in (2) this cost is reduced to Ny, operations for the
kinetic energy operator and 16Ny, operations for the potential energy operator. The
factor of 16 arises because the Fourier transform mesh must be larger than the
wavefunction array to avoid ‘wrapround’ error in the calculation. A further

Phil. Trans. R. Soc. Lond. A (1992)
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significant improvement is that the hamiltonian matrix can be stored in 17N,y
words of memory by dividing it between real and reciprocal space in contrast to the
N3 words of memory required to store the complete matrix in a single space.
However, to exploit this reduction in computational cost the wavefunction must be
transformed from reciprocal space to real space and the product of the wavefunction
and the potential energy operator must be transformed from real space to reciprocal
space. These transformations can be performed in 16N,y In (16NVpy,) operations using
fast Fourier transform techniques.

A number of other algorithms have been developed for performing total energy
pseudopotential calculations, most notably conjugate gradients techniques that
directly minimise the Kohn—Sham energy functional (Gillan 1989 ; Teter et al. 1989).
These methods converge the electronic configuration to its groundstate faster than
the molecular dynamics method but exploit all the features of the original method.
In all these methods there are two operations that dominate the computational cost:
the Fourier transforms and the operation of orthogonalizing the electronic wave-
functions. If there are N occupied electronic bands, which is typically of the order of
0.01Npy, then the total cost of the Fourier transforms scales as 16Ny Npy In (16NVpy)
and the cost of orthogonalizing the wavefunctions scales as N3 Npy. Therefore
the cost of the Fourier transforms dominates for small systems and the cost
of orthogonalizing the electronic wavefunctions dominates for large systems
yielding a computational time that scales as the cube of the size of the system for
large systems. The cost of implementing non-local pseudopotentials used to dominate
the computational time for large systems, typically the cost was a factor of 10 greater
than the cost of that orthogonalizing the electronic wavefunctions. Recently a
method has been developed for implementing non-local pseudopotentials in which
the computational time scales as N Npy, (King-Smith ef al. 1991) so this operation no
longer dominates the computational cost for large systems. Using any of the recently
developed methods total energy pseudopotential calculations can now be routinely
performed for systems containing up to 100 atoms in the unit cell on workstations
and conventional supercomputers.

It has only been possible to provide the briefest overview of recent algorithmic
developments in the total energy pseudopotential technique. The implementation of
these methods on parallel computers is described in the following section. It is
remarkable that the original matrix diagonalization method used for total energy
pseudopotential calculations could not be implemented efficiently on a parallel
computer but that recently developed algorithms are not only much more efficient
but are very well suited to implementation on parallel machines.

3. Implementation of total energy pseudopotential codes on parallel
computers

The central quantities in a total energy pseudopotential calculation are the
electronic wavefunctions which can be represented by a complex array of the form

¥(Npw, Np, Nx), (4)

where Ny is the number of k-points used for Brillouin zone sampling and Npy, and Ny
have been defined above.

The structure of the wavefunction array suggests several methods for dividing the
data across a parallel machine, for instance by k-point or by band or by plane waves.

Phil. Trans. R. Soc. Lond. A (1992)
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To determine which of these strategies is possible for large systems we must consider
the variation of Npyw, Nz and Ny with the number of atoms in the unit cell, N,. These
are:
Npw =& (100-1000)N,, Ny = N,,
{IOO/NA, N, <100, (5)
o, N, = 100.

It is obvious from these scalings that parallelization by k-point is not possible for
large systems. However, it does appear possible to parallelize by band. If this
strategy is adopted it is necessary to store the hamiltonian ‘matrix” and a number
of other arrays of similar size on each compute node. To store these arrays a MWord
of memory per node would be needed for systems containing of the order of 100
atoms in the unit cell and calculations for larger and larger systems would require
more and more memory per compute node. This is uneconomic and hence
parallelization by band cannot be adopted. There is no alternative but to distribute
the plane wave basis states of each wavefunction over the machine. To determine the
most efficient choice for the distribution it is necessary to consider the operations
that are performed on the wavefunctions. As described in the previous section, the
efficiency of modern algorithms relies on the division of operations between real and
reciprocal space and the use of fast Fourier transform (rrT) techniques to transform
between the two spaces. Unfortunately, the FrT is a highly non-local operation and
hence it places extreme demands on the communications system of the parallel
computer. Apart from the rrr all the operations required to perform a total energy
calculation are local (or localized in the case of the most efficient implementation of
non-local pseudopotentials) in either real or reciprocal space. The actual distribution
of the data is irrelevant provided that the distribution of the electronic wave-
functions and the hamiltonian in each space are identical. In this case, local
operations require no communication between nodes. Therefore, the distribution of
the wavefunctions is determined purely by the requirements of the rrr. Since the
properties of each individual machine will determine the most efficient distribution
of the wavefunctions we can only proceed by considering specific examples. We
consider only machines that are now available on which total energy pseudopotential
codes have been successfully implemented.

The first example considered is the Connection Machine (Brommer et al. 1992). The
Connection Machine is an example of a massively parallel computer that contains a
very large number of compute nodes of modest performance. Although the
performance of a single processor may be only a fraction of 1 MFlop the combination
of tens of thousands of processors yields a theoretical performance in excess of
10 GFlop. The Connection Machine is a particularly interesting example as it was
designed to perform rrrs particularly efficiently and thus the connectivity of the
communications system is well suited to this use. A library of microcoded rrT
subroutines exists for performing rrrs and the distribution of the wavefunctions is
dictated by these routines. Implementation of total energy pseudopotential codes on
the Connection Machine can be achieved by rewriting code in FORTRAN 90 using
vector oriented Fortran 90 statements to ensure that relevant operations are
performed in parallel across all the nodes of the machine and calling the rrr library
where appropriate.

The other class of machine that will be considered is typified by the machines
manufactured by Intel and Meiko, which consist of a relatively modest number of

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 1. Illustration of the distribution of data over processors for a sequence of three one-
dimensional Fourier transforms in (a) z, (b) ¥ and (¢) z directions required to perform a three-
dimensional Fourier transform. The figure shows a 9x9x 9 Fourier transform performed on a
machine with four compute nodes. The numbers in boxes (1-9) label the points of the Fourier
transform and the node indices (1-4) show which processor performs the one-dimensional
transform.

powerful compute nodes. In both cases the compute nodes are Intel 1860 processors
capable of a performance in excess of 40 MFlop. There are no fully distributed three-
dimensional FFT routines available on these machines and the majority of the effort
involved in implementing total energy codes on these machines involves writing
programs to perform the rrr (Clarke et al. 1992). However, this does provide the
freedom to choose a distribution of data that minimizes the communications
requirement of the rrr. All multi-dimensional FFTs can be performed as a sequence
of one-dimensional transforms. Each one-dimensional transform requires a large
exchange of data but this can be avoided by ensuring that the data for each
transform lies on the same compute node. Therefore, a distribution of data by
columns along the direction of the transform ensures that each one-dimensional
transform can be performed without inter-processor communication. However, a
global exchange of data is required between each set of one-dimensional transforms
to redistribute the data by columns along the next transform direction. The
distribution of data for a transformation from a reciprocal space to real space is
illustrated schematically in figure 1. The data is initially distributed over the
processors by columns along the x direction, as shown in figure 1a. The first set of
one-dimensional Fourier transforms are performed along the x direction. This is
followed by the first global exchange of data between processors so that the data is
now arranged by columns along the y direction, as illustrated in figure 156. The one-
dimensional transforms along the y direction are then carried out. A second global
exchange of data is then performed so that the data is finally arranged by columns
along the z direction, as illustrated in figure 1c. The final set of one-dimensional
transforms along the z direction are then performed. At the end of this sequence of
steps the transformation from reciprocal space to real space is complete.

If the communications performance of the machine is relatively poor and the
number of processors is not greater than the size of the largest one-dimensional
Fourier transform size a significant increase in efficiency can be achieved by
combining the final two steps of the above sequence by distributing the data by yz
planes, as illustrated in figure 2. The first step of the three-dimensional Fourier

Phil. Trans. B. Soc. Lond. A (1992)
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Figure 2. Distribution of data over nodes to replace the transforms shown in figure 16, c. The data
is distributed by yz plane and the y and z Fourier transforms are performed without redistribution
of data over processors.

transform proceeds as above then a global exchange of data is performed to arrange
the data as shown in figure 2. The transformations in the y and z directions can then
be performed without further redistribution of data. This scheme thus halves the
communications requirement of the FrT compared with the first technique and is
useful if the number of processors is relatively modest and the communications are
slow compared with the compute speed of the processors.

It is well known that the performance of computer codes on vector machines is
crucially dependent on the ratio of vector to scalar operations. The performance of
codes on parallel machines is even more critically dependent on the ratio of parallel
to sequential operations. Essentially this ratio must be greater than N:1 to benefit
from the use of an N processor machine. It is clear that even the very smallest
fraction of sequential operations will limit the size of machine on which calculations
can be usefully performed. Figure 3 shows the operations involved in a total energy
pseudopotential calculation performed using the conjugate gradients method. The
letters in the boxes on the left of the figure show whether the operation is performed
in real or Fourier space and the letters in the boxes on the right of the diagram show
whether the operation is performed sequentially or in parallel. It can be seen that
only a small number of set-up operations have to be performed sequentially. In
particular the conjugate gradients loop shown in figure 3b, which dominates the
computational cost of the total energy pseudopotential calculation, is executed
totally in parallel. Unfortunately this is not always the case. In the case of metallic
systems it is necessary to transform the trial wavefunctions to the Kohn-Sham
eigenstates to determine the occupancies of the electronic bands. This transformation
is determined using conventional matrix diagonalization routines which cannot be
implemented efficiently on parallel machines. This technical problem has yet to be
overcome.

The performance of total energy pseudopotential codes on the Daresbury
Laboratory Intel iPSC/860 and the ‘Grand Challenge’ Meiko i860 Computing
Surface at the University of Edinburgh are shown in figure 4. These timings are for
small systems, containing just 64 silicon atoms in the unit cell, to allow comparison
with the performance of a conventional supercomputer, one processor of a CRAY X-
MP. Figure 4 a is for the Meiko i860 computing Surface and figure 45 is for the Intel

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 3. Flow diagram of total energy pseudopotential calculation showing (a) principle
operations and (b) band by band conjugate gradients optimization. The letters in boxes on the left
of the diagrams show whether the operation is performed in real space (R) or Fourier space (F) and
the letters in boxes on the right of the diagram show whether the operation is performed in parallel
(P) or sequentially (S).

1200
800
P
£
400
1 ]
0 6000 12000 0 6000 12000

number of plane wave basis states

Figure 4. Variation of CPU time with number of plane wave basis states for total energy
pseudopotential calculation for a 64 atom silicon cell. Figures show timings for 16 and 32 processors
of (a) Meiko i860 Computing Surface and (b) Intel iPSC/860 against a single processor CRAY X-
MP.

iPSC/860. The figures show the time required for one iteration of the conjugate
gradients loop as a function of the number of plane wave basis states for n = 16 and
n = 32 processors. It is clear that if the calculation is too small there is no advantage
in using a larger number of compute nodes since the computational time is
dominated by communications rather than compute speed. However, for larger
calculations the advantage of using more processors is clearly shown in the figures.
In particular, the Intel iPSC/860, which slightly outperforms the Meiko because the

Phil. Trans. R. Soc. Lond. A (1992)
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communications system is better suited to our particular applidation, 32 processors
provide a performance three times faster than the CRAY X-MP.

4. The future

Already total energy pseudopotential calculations for 400 atom systems (in unit
cells of 800 atomic volumes to allow for the presence of a surface) have been
performed on a 64 node Meiko i860 Computing Surface (Stich et al. 1992) and a 16K
Connection Machine (Brommer et al. 1992). These machines yield compute speeds on
the total energy pseudopotential codes of the order of 1 GFlop. Intel have now
installed the Delta machine at Caltech. This machine has 570 processors and a
communication performance 10 times faster than that of the iPSC/860. This
machine offers both compute and communications performance 10 times greater
than the Meiko i860 Computing Surface used for the 400 atom calculations. Hence,
the Delta machine would allow calculations to be performed for systems containing
in excess of 1000 atoms. Intel have now announced the Paragon XP/S System which
offers processing speeds of up to 300 GFlop and inter-processor communications
speeds of 280 MBytes s!, a hundred times faster than the iPSC/860. This machine
would be capable of carrying out calculations on systems containing several
thousand atoms in the unit cell. With this machine many of the complex processes
that require ab initio investigation will be within the power of the total energy
pseudopotential method. Furthermore, these figures show that the teraFlop machine
is an achievable goal.
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Professor D. J. Tildesley. We acknowledge financial support from the Science and Engineering
Research Council under grants GR/G32779, GR/G49524 and B18534: NACC. We are grateful for
the help we have received from Dr N.M. Harrison and Dr W. H. Purvis at the Daresbury
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Discussion

A. M. StroneEHAM (Harwell Laboratory, Didcot, U.K.): In addition to your approach to
increasing the number of atoms or electrons considered, there are other routes to the
really useful level, namely embedding (of which Green’s function methods are a
special case) and mesoscopic modelling (Harding, this volume).

M. C. Pay~NE: We agree that the two approaches suggested are useful. Even with
thousands of atoms in a unit cell ab initio calculations will still be limited to the
nanometre lengthscale and alternative methods must be used to study longer
lengthscale systems. Mesoscopic modelling attempts to study such systems by
parametrizing the behaviour of the system on these longer lengthscales. The values
of the parameters should be determined by independent experiment (rather than
adjusting the parameters so that the model ‘agrees’ with experiment) but in many
cases this is not feasible and then the results of the modelling may be questionable.
Ab initio calculations provide an alternative method for determining the values of
physical parameters that cannot be determined experimentally and so combining
ab wnitio calculations with mesoscopic or macroscopic modelling provides a
technique for extending ab initio studies to large systems and makes such modelling
significantly more realistic and rigorous. Embedding schemes provide an efficient
method for studying isolated defects in bulk systems. However, present embedding
schemes only allow ionic relaxation within the embedding surface as this surface
separates the defective region from the perfect bulk. In favourable cases, such as
some close-packed metal surfaces where ionic relaxation is essentially limited to one
or two atomic layers, only a few atoms are required within the embedding surface.
Less favourable situations might require as many as a thousand atoms within the
embedding surface and considerable work is required before enbedding techniques
can be applied to systems containing this number of atoms.
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